Selected publications and presentations
• S. Hamza, A. Ignaszak, A. Kiani (2017) “Synthesis of electrical conductive silica nanofiber/gold nanoparticles composite by laser pulses and sputtering technique” Nanoscale Research Letters 12(1), 432.
• C. Colpitts, A. E. Motamed, R. Wyatt, B. Crawford, A. Kiani (2017). “Mammalian fibroblast cells avoid residual stress zone caused by laser pulses”, Mechanical Behavior of Biomedical Materials, doi: jmbbm.2017.06.005 (in-press)
• B. B. Naghshine, A. Kiani (2017). “3D Transient Model to Predict Temperature and Ablated Areas During Laser Processing of Metallic Surfaces” AIP Advances 7(2), 025007.
• C. Colpitts, A. E. Motamed, B. Crawford A. Kiani (2017). “Mammalian fibroblast cells show strong preference for laser-generated hybrid amorphous silicon-SiO2 textures” Journal of Applied Biomaterials & Functional Materials 15(1): e84-e92
• M. Radmanesh, A. E. Motamed, R. Wyatt, B. Crawford, A. Kiani (2016). “Mouse Embryonic Fibroblasts Accumulate Differentially on Titanium Surfaces Treated with Nanosecond Laser Pulses” Biointerphases 11, 031009.
• B. B. Naghshine, J. Cosman, A. Kiani (2016). “Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication” Journal of Applied Physics 120, 084304
• C. Colpitts, A. Kiani (2016). “Synthesis of bioactive three-dimensional silicon oxide nanofibrous structures on the silicon substrate for biosensors and bionic devices fabrication” Nanomater Nanotechnol, 2016, 6:8 [DOI: 10.5772/62312]
• M. Radmanesh, A. Kiani (2015) “Bioactivity Enhancement of Titanium Induced by Nd:Yag Laser Pulses.” Journal of Applied Biomaterials & Functional Materials 14 (1)
• M. Radmanesh, A. Kiani (2015) “Effects of Laser Pulse Numbers on Surface Biocompatibility of Titanium for Implant Fabrication.” Journal of Biomaterials and Nanobiotechnology, 6, 168-175.
• M. Radmanesh, A. Kiani (2015) “Nd:Yag Laser Pulses Ablation Threshold Of Stainless Steel 304.” Materials Science and Applications, 6, 634-645.
• A. Kiani, K. Venkatakrishnan, & B. Tan. (2015). “Optical absorption enhancement in 3D nanofibers coated on polymer substrate for photovoltaic devices.” Energy Express 23(11), A569-A575
• A. Kiani, N. B. Patel , K. Venkatakrishnan, B. Tan (2015) “Leaf-like nanotips synthesized on femtosecond laser-irradiated dielectric material.” Journal of Applied Physics 117 (7), 074306.
• A. Kiani, M. Rahmani, S. Manickam, B. Tan (2014) “Nanoceramics: Synthesis, Characterization, and Applications.” Journal of Nanomaterials 2014.
• A. Kiani, K. Venkatakrishnan, & B. Tan. (2014). “Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.” Energy Express 22 (101), A120-A13.
• A. Kiani, P. Singh Waraich, K. Venkatakrishnan, & B. Tan. (2012). “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz repetition femtosecond laser pulses.” Nanoscale Research Letters 7, 518.
• A. Kiani, K. Venkatakrishnan, & B. Tan. (2011). “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion.” Solar Energy 85, 1817-1823.
• A. Kiani, K. Venkatakrishnan, B. Tan, & V. Venkataramanan. (2011). “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses.” Optics Express 19, 10834-10842.
• A. Kiani, K. Venkatakrishnan, & B. Tan. (2010). “Direct laser patterning of amorphous silicon on Si-substrate induced by high repetition femtosecond pulses.” Journal of Applied Physics 108, 074907-074907-5. (Selected for publication in the November 2010 issue of Virtual Journal of Ultrafast Science).
• A. Kiani, K. Venkatakrishnan, & B. Tan. (2010). “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser.” Optics Express 18, 1872-1878.
• A. Kiani, K. Venkatakrishnan, & B. Tan. (2009). “Micro/nano scale amorphization of silicon by femtosecond laser irradiation.” Optics Express 17, 165181-16526.
• V.P. Kotlyarov, S.V. Leleka, & A. Kiani. (2007). “Planning features of the metallic sheets gas – laser cutting modes. Naukovi visti NTUU "КPI" 51, 66-71